Propositional Logic
Logical Connectives, in descending order of precedenceNegation | \(\neg\) | "not" |
Conjunction | \(\land)\ | "and" |
Disjunction | \(\lor\) | "or" |
Implication | \(\Rightarrow\) | "if...then" |
Biconditional | \(\Leftrightarrow\) or \(\equiv\) | "if and only if" |
Truth Table for Logical Connectives
P | Q | \(\neg\)P | P \(\land\) Q | P \(\lor\) Q | P \(\Rightarrow\) Q | P \(\Leftrightarrow\) Q |
---|---|---|---|---|---|---|
F | F | T | F | F | T | T |
F | T | T | F | T | T | F |
T | F | F | F | T | F | F |
T | T | F | T | T | T | T |
Logical Equivalences
Commutativity of \(\land\) | \(\alpha \land \beta \equiv \beta \land \alpha\) |
Commutativity of \(\lor\) | \(\alpha \lor \beta \equiv \beta \lor \alpha\) |
Associativity of \(\land\) | \((\alpha \land \beta) \land \gamma \equiv \alpha \land (\beta \land \gamma)\) |
Associativity of \(\lor\) | \((\alpha \lor \beta) \lor \gamma \equiv \alpha \lor (\beta \lor \gamma)\) |
Double-negation elimination | \(\neg(\neg \alpha) \equiv \alpha\) |
Contraposition | \(\alpha \Rightarrow \beta \equiv \neg \beta \Rightarrow \neg \alpha\) |
Implication elimination | \(\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta\) |
Implication elimination | \(\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)\) |
deMorgan's | \(\neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta\) |
deMorgan's | \(\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta\) |
Distributivity of \(\land\) over \(\lor\) | \(\alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma)\) |
Distributivity of \(\lor\) over \(\land\) | \(\alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma)\) |
Conjunctive Normal Form (CNF)
A statement is in CNF if it is a conjunction (sequence of ANDs) of one or more disjunctions (sequences of ORs) of literals (variables or negation of variables)
CNF Conversion
- Replace all \(\Leftrightarrow\) using biconditional elimination
- Replace all \(\Rightarrow\) using implication elimination
- Move all negations inward using double-negation elimination and/or deMorgan's rule
- Apply distributivity of \(\lor\) over \(\land\)
Resolution